Wednesday 13 November 2013

Vishwakarma Engineering Works - Solid Edge Case Study

Business challenges: Make parts that are more standardized Promote design re-use Develop new products consistently

Keys to success: Convert to a 3D process Utilize experienced users in training of new users Implement synchronous technology

Results: Enabled faster product development Eliminated non value-added work Reduced errors found during manufacturing stage

Limitation of 2D Drawings: Although 2D drawings had been the primary design deliverable for many years, Vishwakarma Engineering Works (VEWorks) found that there were drawbacks to a 2D approach. If there was a design change, 2D drawings could not be easily updated in a timely manner. Changing complex assemblies involved considerable drafting hours. Engineers faced pressure to revise the drawings, which was not only time consuming, but also arduous. Moreover, VEWorks often is tasked with producing a prototype to be approved by customers before getting the go-ahead for production.

“The conventional way of designing in 2D was an impediment,” says Jay Patel, CEO. “It was time-consuming and often human errors would surface during the manufacturing stage.”

He notes, “Our production orders are usually for small batches in varying sizes. Any change in dimension requires updating the entire assembly. This is more common when we are manufacturing process equipment.”
The solution was to convert to a 3D design process.

Choosing Solid Edge: VEWorks chose to implement Solid Edge® software from product lifecycle management (PLM) specialist Siemens PLM Software. The most complete hybrid 2D/3D computer-aided design (CAD) system, Solid Edge with synchronous technology enables a company to accelerate design, makes changes faster, and improve the reuse of imported CAD data.

Patel notes, “One meeting with Siemens PLM Software was sufficient for our management to understand the advantages Solid Edge had to offer. The biggest advantage with Solid Edge is that it offers far better editing and updating capabilities than any of its competitors. It’s backed by support that is among the best in the industry. Plus, Siemens PLM Software offers a comprehensive range of product development solutions that can be easily integrated into our growing organizational structure.” Read Full Story.

Monday 11 November 2013

Why PLM Is So Important For High-Tech Manufacturers

Product lifecycle management (PLM) may sound like one of those deep-in-the-weeds business terms, but it has become one of the most important arenas for accelerating product deliveries, reducing costs, and generating more revenues in major manufacturing industries. Going forward, aerospace, consumer electronics, medical device, semiconductors, and wireless infrastructure manufacturers would need to invest even more in product lifecycle management technologies and capabilities and Product Lifecycle Services to make this complex process more streamlined, cohesive, and simplified.

So what is product lifecycle management? Put simply, it’s all the processes and systems involved in product development from the original product conception through the end of its life. Product lifecycle management involves numerous corporate groups such as marketing, engineering, manufacturing, and purchasing. These processes and systems are particularly designed for use by manufacturers employing thousands of highly skilled designers, scientists and engineers working within global processes across hundreds of current and future products.

Why is PLM so important?

Product development has become strategically crucial to the financial performance of these manufacturing companies so they are investing more in it. They understand and appreciate problems PLM addresses and the benefits it can reap such as lower production costs, as well as accelerations in new product designs and launch schedules and engineering cycle times.

What’s at stake for high-tech manufacturers?


Each year these manufacturers companies spend as much as 25 percent of their revenues—in some cases billions of dollars—on innovation and product development, according to Accenture analysis. But nearly half of the investment is on products that are either late to market or don’t  address customer requirements. A one percent reduction in the time it takes to deliver a product to market by improving PLM, for example, can translate to major financial benefits.

While PLM can solve a plethora of problems, a one-size-fits-all offering does not exist. The correct remedies depend on the company, industry, specific needs, and competitive dynamics. Based on Accenture’s extensive experiences with clients, however, the most pervasive and common problems are inefficient end-to-end processes, fragmented data systems, mounting offering and product complexity, and difficulties adhering to more and increasingly stringent regulations.

Four Product Development Problems Vex Manufacturers

Inefficient end-to-end processes: Because of deeply ingrained silos within these companies, the marketing, product planning, engineering, manufacturing, purchasing, sales, and service groups often operate independently. Too often these groups are disconnected islands that rarely talk to each other. To boost efficiency, they need to operate in a more coordinated and streamlined fashion by determining areas where the overall process can be improved. To further improve end-to-end process efficiency, they should enhance and supplement their work forces, as well as enhance product design, validation, and manufacturing.

Fragmented data systems:  When investing in product development, companies seek data about requirements, designs, parts, bills of material, software codes, and quality. But within these companies such data often remains disorganized, unclear, redundant and dispersed throughout different groups spread among hundreds of applications. Valuable product development data does not get captured, categorized, managed nor disseminated efficiently. These firms need to create centralized data owners and management systems. By doing so, they increase accessibility of accurate, timely and reusable data throughout the business. This increases process efficiency and re-use of product development data and, therefore, investment dollars.

Mounting product complexity: Most companies have seen a steady increase in their number of product offerings, which often combine sophisticated services and features. But due to the mix of mechanical, electronic, software, and service elements, these products are increasingly complex. As such, the offerings are more complicated to conceptualize, develop, and deliver to market. These companies need to examine and enhance the profitability of different product types and features as well as project platforms. Furthermore, if companies are challenged to gather excellent internal and external product ideas, they can accelerate innovation processes, incubate new businesses, and create and mine new product ideas.

Difficulties adhering to increasingly stringent regulations: In the product development arena of high-tech companies, the number of global regulations continues to grow and often has become more complex. To avoid fines and penalties, these companies need to be vigilant and well-organized in following product regulations. They need to more uniformity in the ways in which these regulations are abided by and tracked.

Final Thoughts

It’s not an overstatement to say that PLM is fast becoming one of the most important areas in manufacturing companies for improving business performance. The potential improvements PLM offers are widespread and significant. They can be realized using a number of approaches and techniques. This is the time for manufacturers to derive all the benefits they can out of their PLM processes.

Source: http://www.mbtmag.com/articles/2013/07/why-plm-so-important-high-tech-manufacturers



Shop Floor Work Instructions Made Easier With PLM

How do you create the work instructions for your shop floor workers? How do you reconcile them with the manufacturing structure? How do you communicate changes?

If you’re using paper-based methods to create and communicate work instructions, or finding your electronic methods cumbersome, you may want to consider switching to interactive, PLM-based electronic work instruction.

Electronic work instruction (EWI) refers to computerized visual tools to instruct shop floor workers to perform their jobs. Unlike paper-based work instructions, electronic work instructions may also include 3D models of the parts to be assembled, information about the tools as well as product and manufacturing information (PMI). In addition, EWI may be interactive, allowing the reader to manipulate the 3D view, play animated assembly sequences as well as browse through a sequential list of steps to be performed per job order.

EWI is in use by many manufacturers from various industry segments. Any production line that requires manual operations requires a certain level of shop floor documentation. Regulated industries such as aerospace and shipbuilding must invest significant efforts to define and implement high standards for shop floor documentation. In many cases, government regulations mandate that shop floor documents meet certain criteria.

There is no single way to author work instructions. Some manufacturers may use inexpensive Microsoft Office® software tools to author documents, while others implement integrated work instruction and routing planning tools. In general, work instructions are tightly connected to the engineering design and manufacturing planning processes, constituting a significant component of the communication flow. Authoring of work instructions requires the availability of engineering and manufacturing information, as well as the validity of assembly processes. In some cases, work instructions may include instructions for machine operators. Shop floor work instructions also have to satisfy intra-company formatting and layout standards. Therefore, customized template creation is a key requirement of any work instructions solution.

Traditionally, work instructions would be printed and distributed to the shop floor with accompanying 2D engineering drawings. Many manufacturers still use that method, at least partially. Electronic work instruction, however, may be embedded into the enterprise manufacturing execution system (MES). This allows manufacturers to combine all manufacturing execution tasks and information into a single backbone, and to link the work instructions to work orders, resources and parts stock. MES systems also allow data collection which is required for many processes (for example, nonconformance).

Building on the value of MES-based electronic work instructions, Siemens PLM Software now offers an end-to-end, PLM-based solution for work instruction authoring and publishing. The basic concept is that the entire authoring process – from engineering design through manufacturing planning to shop floor execution – is performed using product lifecycle management (PLM) software. PLM applications support the workflow, and the work instruction data, including CAD-neutral visualization using the JT format. The PLM system manages electronic work instructions in one single source that spans the lifecycle, from Design to Manufacturing Planning to Process Instructions Planning to Execution.

Because the authoring process is managed using a single PLM backbone, your company reduces the risk of quality escapes, increases engineering efficiency and eliminates the need for data conversion. The PLM system supports smooth change management, minimizes data conversion and provides state-of-the-art 3D-based interactive authoring. Your company can realize significant savings in engineering time, as well as minimize time spent by manufacturing experts on the shop floor.

Source: http://www.mbtmag.com